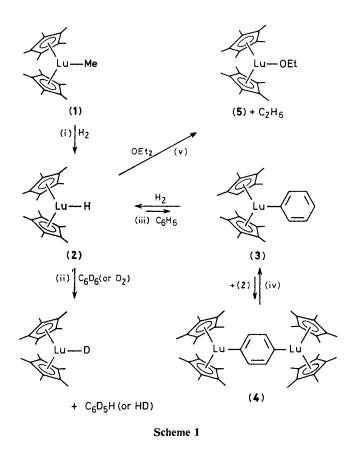
Facile C-H Activation by Lutetium-Methyl and Lutetium-Hydride Complexes

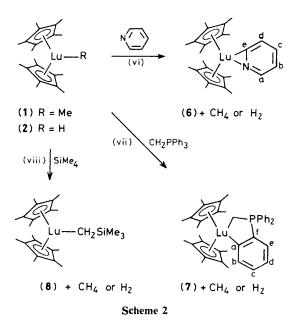
Patricia L. Watson


Central Research and Development Department, E. I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware, 19898, U.S.A.

Bis(pentamethylcyclopentadienyl)lutetium complexes Lu(η^5 -C₅Me₅)₂R (R = Me, H) react at 20—50 °C in hydrocarbon solvents with benzene, pyridine, the ylide CH₂PPh₃, and tetramethylsilane to give stable, isolatable products of C–H activation, *i.e.* metallation at a carbon of the reagent with extrusion of R–H.

I report here that lutetium-alkyl and -hydride derivatives can activate sp^2 C-H bonds in both intra- and inter-molecular reactions and even activate the sp^3 bonds of SiMe₄. That these reactions occur under mild conditions with hydrocarbons of very low acidity is extraordinary for stable, isolatable complexes.

The hydride Lu(η^{5} -C₅Me₅)₂H (2) [ν_{Lu-H} (Nujol) 1345 cm⁻¹] is readily formed^{†1} by hydrogenolysis of (1) [reaction (i), Scheme 1; pentane solution, 20 °C, 1 atm H₂]. This hydride rapidly undergoes H/D exchange when dissolved in deuteriated arenes [benzene or toluene, reaction (ii)] at 20 °C forming the deuteride, Lu(η^{5} -C₅Me₅)₂D [ν_{Lu-D} (Nujol) 975 cm⁻¹]. As shown in reaction (ii), Scheme 1, exchange with D₂ also occurs in pentane at 20 °C.


A more important non-degenerate intermolecular C-H activation between the hydride (2) and benzene occurs

[†] All the lutetium complexes reported in this communication are isolated as white crystalline solids or powders, characterised by full elemental analyses, i.r. spectra, and hydrolysis experiments in addition to the n.m.r. data reported in the text. N.m.r. data for (1) and (2) are in ref. 1.

[reaction (iii)] wherein hydrogen is liberated and the phenyl complex (3) is formed [360 MHz 1 H n.m.r. of (3) (C₆D₁₂) δ 1.84 (s, 30 H, C₅Me₅), 6.84 (d, J_{HH} 6.45 Hz, 2H, o-Ph), 6.98 (t, $J_{\rm HH}$ 7.6 Hz, 1H, *p*-Ph), and 7.14 (app.t, $J_{\rm RH}$ 7.3 Hz, 2H, *m*-Ph); ¹³C n.m.r. C₆D₁₂ δ 10.73 (C₅*Me*₅), 118.81 (C₅Me₅), 125.01 (p-Ph) 126.94, 135.98 (o-Ph, m-Ph), and 198.54 p.p.m. (phenyl C-Lu)]. Reaction (iii) is rapidly reversible and formation of (3) plus H_2 is disfavoured thermodynamically. The reaction can be forced by purging H₂ from the solution or by coupling reactions (i) and (ii). Thus, a benzene solution of (1) and (2) (10:1) in a closed vessel is converted completely into (3) over several hours via coupled hydrogenolysis and metallation. [Methyl complex (1) does react directly with benzene but more slowly than the hydride (2).] A slower reaction of the phenyl group of (3) with hydride (2) (1:1 in hexane, 25 °C) gives the interesting *p*-metallated complex (4) $[^{1}H n.m.r. of (4)]$ $(C_6 D_{12}) \delta 1.85$ (s, 30H, $C_5 M e_5$) and 6.60 (s, 4H, aryl); ¹³C n.m.r. $(C_6 D_6) \delta 10.57 (C_5 M e_5), 117.7 (C_5 M e_5), 134.87 (aryl CH), and$ 194.78 p.p.m. (aryl C-Lu)]. Complex (4) is the only doubly metallated isomer formed, presumably for steric reasons.

Co-ordination of Lewis bases to the hydride (2) inevitably results in further activation of the ligand [reactions (v), (vi), and (vii), Schemes 1 and 2]. The diethyl ether adduct of (2),² stable below -30 °C, extrudes ethane on warming to give Lu(η^{5} -C₅Me₅)₂OEt, (5) [¹H n.m.r. of (5) (C₆D₆) δ 1.42 (t, J_{HH} 7.06 Hz, 3H, CH₃), 2.04 (s, 30H, C₅Me₅), 4.46 (q, J_{HH} 7.06 Hz, 2H, CH₂); ¹³C n.m.r. (C₆D₆) δ 11.53 (C₅Me₅), 22.19 (CH₃), 62.28 (O-CH₂), and 116.13 p.p.m. (C₅Me₅)]. Only C₂HD₅ is observed when (C₂D₅)₂O is used suggesting a direct attack of hydride on the carbon α to oxygen, and not a possible mechanism involving initial metallation at the β -carbon atom.

Co-ordination of pyridine to (1) or (2) gives initial adducts (1) pyridine or (2) pyridine and is followed by metallation at the 2-position of pyridine with concomitant evolution of H₂ or CH₄. The structure of the product (6) (from X-ray crystallography³) shows the o-metallated pyridine ring to lie in the plane between the two η^5 -C₅Me₅ rings, with both C and N coordinated to the Lu atom [¹H n.m.r. of (6) (C_6D_{12}) δ 1.75 (s, 30H, C₅Me₅), 6.89 (ddd, 1H, H_b), 7.32 (td, 1H, H_c), 7.73 (dt, 1H, H_d), 8.23 (dt, 1H, H_a) ($J_{bc} = J_{cd} = 7.36$ Hz; $J_{ab} = 5.12$ Hz; $J_{ac} = J_{ad} = J_{bd} = 1.4$ Hz); ¹³C n.m.r. (C_6D_{12}) δ 10.45 (C₅Me₅), 115.88 (C₅Me₅), 120.82 (C_b), 133.43 and 133.81 (C_c , C_d), 145.3 (C_a), and 234.26 p.p.m. (C_e)]. The kinetics of formation of (6) are first order in (1) pyridine adduct but show virtually no dependence on the excess of pyridine, suggesting an intramolecular reaction. Interestingly a similar o-metallation reported for $Ti(C_5H_5)_2R$ complexes only occurs with 2-substituted pyridines, not with pyridine itself.4

Further examples of intramolecular aryl C-H activation, but now at the δ -position, are observed with ylide complexes. Addition of CH₂PPh₃ to (1) or (2) gives initial adducts (1) CH₂PPh₃ and (2) CH₂PPh₃ which then eliminate CH₄ or H₂ (respectively) at 20 °C in toluene or pentane to give the 5-membered metallacycle, (7) (Scheme 2) [¹H n.m.r. of (7) (C₆D₆) δ 0.49 (d, 2H, Lu-CH₂-P, J_{PH} = 14.5 Hz), 1.99 (s, 30H, C₅Me₅), 6.95-7.05 (m, 7H, m-Ph, p-Ph, and H_d at 7.03, by decoupling) 7.29 (td, 1H, H_e, J_{ed} = J_{PH} = 8.5 Hz, J_{ce} = 1.1 Hz) 7.36 (tdd, 1H, H_c, J_{cb,cd} = 7.3 Hz, J_{ce} = 1.1 Hz, J_{PH} = 2.8 Hz), 7.62 (m, 4H, o-Ph, J_{HH} = 6.5, 1.5 Hz, J_{PH} = 13.2 Hz), and 7.7 (d, 1H, H_b, J_{bc} = 7.3 Hz)]. Intermolecular reaction of tetramethylsilane with (1)

Intermolecular reaction of tetramethylsilane with (1) [reaction (viii), Scheme 2; 40 °C in cyclohexane] again results in metallation and clean elimination of methane (1 equiv.) to form complex (8) in high yield [¹H n.m.r. of (8) (C_6D_{12}) δ -0.39 (s, 2H, Lu-CH₂), -0.03 (s, 9H, SiMe₃), 1.98 (s, 30H, C_5Me_5); ¹³C n.m.r. (C_6D_6) δ 4.8 (SiMe₃), 11.5 (C_5Me_5), 22.96 (Lu-CH₂), and 118.54 p.p.m. (C_5Me_5)]. For R = H rather than CH₃, reaction (viii) is readily reversible and the hydride (2) is thus a catalyst for the H/D exchange between tetramethylsilane and D₂ or C₆D₆. Precedents for intramolecular activation of silyl-methyl C-H groups exist in uranium chemistry.^{5,6} Other examples of such ready intermolecular activation of tetramethylsilane are uncommon.^{7,8} Organo-lanthanide complexes containing the CH₂SiMe₃ ligand have been prepared,^{9,10} however, by metathetical routes.

In conclusion, the reactions described demonstrate the following important points. C-H activation is a general phenomenon for both lanthanide alkyls and lanthanide hydrides. The alkyls and hydrides, while stable and isolatable, show a remarkable level of reactivity; however, this reactivity can be quite selective giving high yields of a single product. Finally, the products of these C-H activation reactions are interesting complexes themselves and not necessarily easily prepared by other routes.

I thank R. M. Swiatek for technical assistance and G. W. Parshall for his comments.

Received, 25th November 1982; Com. 1354

References

- 1 P. L. Watson and D. C. Roe, J. Am. Chem. Soc., 1982, 104, 6471.
- 2 P. L. Watson, J. Am. Chem. Soc., 1982, 104, 337.
- 3 J. Calabrese and P. L. Watson, in preparation.
- 4 E. Klei and J. H. Teuben, J. Organomet. Chem., 1981, 214, 53-5 J. W. Bruno, T. J. Marks, and V. W. Day, J. Am. Chem. Soc.,
- 1982, **104**, 7357. 6 S. J. Simpson, H. W. Turner, and R. A. Andersen, *Inorg.*
- *Chem.*, 1981, **20**, 2991. 7 Tetramethylsilane does react with the photolysis product of
- 7 Tetramethylsilane does react with the photolysis product of $W(\eta^5-C_5H_5)_2H_2$: M. Berry, K. Elmitt, and M. L. H. Green, J. Chem. Soc., Dalton Trans., 1979, 1950.
- 8 M. F. Lappert, L. M. Engelhardt, C. L. Raston, and A. H. White, J. Chem. Soc., Chem. Commun., 1982, 1323, and references therein.
- 9 H. Schumann, W. Genthe, N. Bruncks, and J. Pickardt, *Organometallics*, 1982, 1, 1194, and references therein.
- 10 J. L. Atwood, W. E. Hunter, R. D. Rogers, J. Holton, J. McKeeking, R. Pearce, and M. F. Lappert, J. Chem. Soc., Chem. Commun., 1978, 140.